The Graph on the Sphere

S. Nada ${ }^{(1)}$, E. El-Shafey ${ }^{(2)}$

Abstract

In this paper, we will introduce new type of graphs on the sphere and explain the properties of this graph. The incidence and adjacent matrices will be defined for this graph. Some differences between this new graph and the normal graph will be discussed.

Keywords: Adjacency, Graph, incidence, matrix, sphere

1. Definitions and Background:

Terminolgies:

An abstract graph G is a diagram consisting of a finite non- empty set of the elements called vertices denoted by $V(G)$ together with a set of unordered pairs these elements called edges and denoted by $\boldsymbol{E}(\boldsymbol{G})$. The set of vertices of the graph G is called the vertex set of G and the list of edges is called the edge list of $G[2,3]$. Let v and w be two vertices of a graph, if v and w are joined by an edge e, then v and w are said to be adjacent. Also, v and w are said to be incident with \boldsymbol{e}, and \boldsymbol{e} is said to be incident with v and w. $[1,4,5]$.
If G be a graph without loops, with n- vertices labeled $\mathbf{1 , 2 , 3}, \ldots, \mathbf{n}$. The " adjacency matrix " $A(G)$ in the $\mathbf{n x} \mathbf{n}$ matrix in which the entry in row i and column j is the number which denotes the adjacent of a vertex v^{i} with vertex v^{j}. let G be a graph without loops, with n-vertices labeled $\mathbf{1 , 2 , 3}, \ldots . ., \mathrm{n}$ and m - edges labeled $\mathbf{1 , 2 , 3 , \ldots \ldots . , \mathrm { m }}$.The " incidence matrix " $I(G)$ is the $\mathbf{n \times m}$ matrix in which the entry in row i and and column j is $\mathbf{1}$ if vertex i is incident with edge j and 0 otherwise.
A graph on sphere S^{2} is defined as $\bar{G}=(\bar{V}, \bar{E})$ where \bar{V} is a set of vertices on a geodesic, \bar{E} is the set of edges $\boldsymbol{e}_{i} \in \bar{E}$, \boldsymbol{e}_{i} determined by three vertices in one specific direction clockwise or anti-clockwise.

2. Main Results:

Now, we will get more close to some kinds of graphs on spheres and see some of their properties. Also the matrices which represent this new graph. Let us start with the following definition:

Simple Graph on Sphere:

A graph $G=(V(G), E(G))$ consists of two finite sets: $V(G)$, the vertex set of the graph, often denoted by just V, which is a nonempty set of elements called vertices, and $E(G)$, the edge set of the graph, often denoted by just E, which is a possibly empty set of elements called edges
.Such that each edge e in E is assigned by three vertices in clockwise direction. SeeFig.(1).
i.e $e_{o}=\left\{v_{0}, x, v_{1}\right\}, e_{1}=\left\{x, v_{1}, v_{0}\right\}, e_{2}=\left\{v_{1}, v_{0}, x\right\}$

Example 1:

Fig.(1) represent the new graph $\overline{\boldsymbol{G}}$ where the vertex set $V(\overline{\boldsymbol{G}})$ is the set (v_{0}, x, v_{1}) and the edge-list $E(\overline{\boldsymbol{G}})$ consists of the pairs $\left(v_{0} v_{1}\right) x,\left(x v_{0}\right) v_{1},\left(v_{1} x\right) v_{0} \quad$ where $\left(v_{0} v_{1}\right) x$ denote the edge between the two vertices $\boldsymbol{v}_{o}, \boldsymbol{v}_{1}$ along \mathbf{x}.
And, $\left(x v_{0}\right) v_{1}$ denote the edge between the two vertices x ,v_{o} along v_{1} and so on.

Fig.(1):A simple graph on sphere

$$
V(\overline{\boldsymbol{G}})=\left\{v_{0}, x, v_{1}\right\}
$$

and

$$
\begin{aligned}
E(\overline{\boldsymbol{G}}) & =\left\{e_{0}=\left(v_{0}, x, v_{1}\right), e_{1}=\left(x, v_{1}, v_{0}\right), e_{2}=\left(v_{1}, v_{0}, x\right)\right\} \\
& =\left\{e_{0}=\left(v_{0} v_{1}\right)_{x}, e_{1}=\left(x v_{0}\right)_{v_{1},}, e_{2}=\left(v_{1}, x\right)_{v o}\right\} \\
& =\left\{\boldsymbol{e}_{0}, \boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right\}
\end{aligned}
$$

Our work should be either in clockwise direction or anticlockwise direction one way is isomorphic, hence

Lemma:

There is an isomorphism between the clockwise movement in any simple graph on a sphere and anticlockwise movement.

The adjacency and incidence matrices of \bar{G} are given by

Fig2:The simple graph on sphere with six vertices

$$
\boldsymbol{V}(\overline{\boldsymbol{G}})=\left\{v_{0}, x, v_{1}, z, v_{2}, y\right\}
$$

and

$$
\left.\begin{array}{rl}
\boldsymbol{E}(\overline{\boldsymbol{G}})=\left\{e_{0}\right. & =\left\{v_{0}, x, v_{1}\right\}, e_{1}=\left\{x, v_{1}, z\right\}, e_{2}=\left\{v_{1}, z, v_{2}\right\}, \\
& e_{3}
\end{array}=\left\{z, v_{2}, y\right\}, e_{4}=\left\{v_{2}, y, v_{0}\right\}, e_{5}=\left\{y, v_{0}, x\right\}\right\}
$$

$$
\begin{aligned}
& E(\overline{\boldsymbol{G}})=\left\{e_{0}=\left(v_{0} v_{1}\right)_{x,} e_{1}=(x z)_{v 1}, e_{2}=\left(v_{1} v_{2}\right)_{z}, e_{3}=(z y)_{v 2},\right. \\
& e_{4}\left.=\left(v_{2} v_{o}\right)_{y}, e_{5}=(y x)_{v o}\right\}
\end{aligned}
$$

$$
=\left\{\boldsymbol{e}_{0}, \boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}, \boldsymbol{e}_{4}, \boldsymbol{e}_{5}\right\}
$$

and the adjacency will be in the form:
where 1_{a} the two vertices are the ends of the edge along vertex a.

And the incident matrix is:

Example 3:

Fig. 3 Consist of two great circles intersect by two vertices v_{o} and v_{1} and u, n, k, m are the via vertices.
where:

$$
V(\overline{\boldsymbol{G}})=\left\{v_{0}, u, n, v_{1}, k, m\right\}
$$

and

$$
\begin{aligned}
E(\bar{G})= & \left\{\left\{\left(v_{0}, u, v_{1}\right),\left(u, v_{1}, k\right),\left(v_{1}, k, v_{0}\right),\left(k, v_{0}, u\right),\right.\right. \\
& \left.\left(v_{0}, n, v_{1}\right),\left(n, v_{1}, m\right),\left(v_{1}, m, v_{0}\right),\left(m, v_{0}, n\right)\right\} \\
= & \left\{e_{0}, e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}\right\}
\end{aligned}
$$

Fig3: Two simple graphs on sphere with six vertices
and the adjacency matrix will be in the form:

In the above. Matrix

4 in the first row represents $\mathbf{1}_{\mathrm{u}}+\mathbf{1}_{\mathrm{k}}+\mathbf{1}_{\mathrm{n}}+\mathbf{1}_{\mathrm{m}}$ as well as. $\mathbf{2}$ in the second row is equal to $\mathbf{1}_{\mathrm{v} 1}+\mathbf{1}_{\mathrm{vo}}$ and $\mathbf{2}$ in the third row will equal $\mathbf{1 v 1}+1_{\mathrm{vo}}$ Similarly $4,2,2$ in the fourth, fifth and sixth row of these matrix respectively .

And the incident matrix is:

3. Types of the new graph:

3.1 Null Graph:

- It is a graph which contains only isolated nodes "Vertices", i.e. the set of edges in a null graph is empty. See Fig.(3.1.a).

Fig 3.1.a: Null graph with two vertices only

- We may have null graphs either with two points or more . i.e. $\mathrm{E}=\boldsymbol{\phi}$ See Fig.(3.1.b).

Fig 3.1.b: Null graph with alot of vertices

3.2 Loop:

An edge of a graph that joins a vertex to It self is called a loop. See Fig.(3.2.a)

Fig 3.2.a: The loop on the sphere

- It's possible to draw infinite number of loops on the sphere .All loops are isomorphic in geometric sense.
- In similar normal graph it is possible to draw infinite number of loops at a single point.
- In two different points on the sphere we can draw two loops and these two loops intersect in exactly two points or no. See Fig.(3.2.b)

Fig 3.2.b: two loops from two vertices

4. Properties of the graph on a sphere:

ISSN 2229-5518

- An edge in the new graph is the curve passing through three vertices.
- There is only one great circle can pass through two certain points on the surface of the sphere.
- Any two great circles intersect in two points.
- Multigraph cannot be applied on the surface of the sphere, because only one great circle can pass through two certain points.

5. Notes:

- The largest circle in the sphere is called a great circle.
- The radius or (diameter) of the great circle is the radius or (diameter) of the sphere.
- Every great circle divides the sphere into two equal parts called hemispheres.
- A section in a sphere, S^{2}, is a S^{1} curve and in case the radius of the section S^{1} is the same of the radius of the sphere, S^{2}. Then this section is a great circle .
- Sections of the sphere that do not contain a diameter are called small circles. See Fig (5.1)

Fig 5.1: Small and great circles
Simple graphs can be drawn on small circles and in these cases isomorphism transforms these graphs into great circles.
i.e. All our work can be done in small circles as well.

6. Stereographic projection:

Now we defined the new graph it is the graph on the elliptic geometry by using the projection we can make a comparison between the graph on the sphere and the normal graph by using the Stereographic projection.

$$
\begin{aligned}
V(X, Y, Z) & \longrightarrow v(x, y, 0) \\
\infty & \longrightarrow \text { The north pole on the sphere. }
\end{aligned}
$$

Definition:

Let S^{2} denote the unit sphere $X^{2}+Y^{2}+Z^{2}=1$ in the R^{3} and let $N=(0,0,1)$ denote the "north pole" of S^{2}.

Given a point $P \in S^{2}$, other than N, then the line connecting N and \boldsymbol{P} intersects the $\boldsymbol{X y}$ - plane at a point $P^{`}$.

The stereographic projection is the map:

$$
F:\left(S^{2}-N\right) \rightarrow R^{2}
$$

Fig. (6.1) is model of the Riemann sphere has its south pole resting on the origin of the complex plane. Each point on the surface of the Riemann sphere corresponds to a unique point in the complex plane and vice versa.

Fig 6.1: Riemann sphere
The fact that the points $\boldsymbol{P}, \boldsymbol{P}^{\prime}$ and \boldsymbol{N} all lie on one line can be expressed by the fact that

$$
\begin{equation*}
(X, Y, Z-1)=t(x, y, 1) \tag{1}
\end{equation*}
$$

for some non-zero real number t.
Here $P=(X, Y, Z), N(0,0,1)$ and $P^{\prime}(x, y, 0)$ the sphere of radius $\mathbf{1}$ with center at the origin is given by :
$G=\{(X, Y, Z) / X 2+Y 2+Z 2=1\}$
An arbitrary plane in three-space is given by :
$A X+B Y+C Z+D=0$
for some arbitrary choice of the constants $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$ and \boldsymbol{D}. Thus a circle on the unit sphere is any set of points whose coordinates simultaneously satisfy equations (2) and (3). The idea of the proof is that one can use equations (2) and (1) to write X as a function of t and x, Y as a function of t and, y and Z as a function of t and to simplify equation (3) to an equation in x and y. Since the equation in x and y
so obtained is clearly the equation of a circle in the $x y$ plan, the projection of the intersection of (2) and (3) is a circle.

To be more precise:

Equation (1) says that $X=t x, Y=t y$, and $1-Z=t$. set $\boldsymbol{Q}=\frac{1+z}{1-z}$ and verify that
$z=\frac{Q-1}{Q+1}, \quad 1+Q=\frac{2}{t}$
and $\quad \boldsymbol{Q}=\boldsymbol{x}^{2}+\boldsymbol{y}^{\mathbf{2}}$
If P lies on the plane,
$A X+B Y+C Z+D=0$

Thus

$A t x+B t y+C \frac{Q-1}{Q+1}+D=0$
Or
$\frac{2 A x}{Q+1}+\frac{2 B y}{Q+1}+C \frac{Q-1}{Q+1}+D=0$

Whence,

$2 A x+2 B y+C(Q-1)+D(Q+1)=0$
Since the coefficients of the \boldsymbol{x}^{2} and the \boldsymbol{y}^{2} terms are the same, this is the equation of a circle in the plane.

This shows that the new graph in which the edge is determined by three vertices turned

Or
$(C+D) Q+2 A x+2 B y+D-C=0$

Recalling that

$Q=x^{2}+y^{2}$
We see
$(C+D)\left(x^{2}+y^{2}\right)+2 A x+2 B y+D-C=0$
to the normal graph by stereographic projection.

REFERENCES :

[1] Wilson R.J.: Watkins J.J.: Graph, an introductory approach, a first course in discrete mathematics. Jon Wiley and Sons Inc, Canada, 1990.
[2] Giblin P.J.: Graphs, surfaces and homology, an introduction to algebraic topology. Champman and Hall Ltd,
London 1977.
[3] Wilson R.J.; Introduction to graph theory. Oliver and Boyed, Edinburgh 1972.
[4] El-Ghoul M, Adel Sh. : retraction of the new graph, Journal of Applied Science Research in Pakistan 2009
[5] White A.T.: Graphs. :groups and surfaces. Amsterdam, NorthHolland Publishing Company 1973.

